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Abstract: Adding fast charging stations (FCSs) and photovoltaic systems (PVs) to modern electrical distribution 

networks (EDNs) can cause problems like voltage fluctuations and more power loss. One way to solve these issues is 

to use a levy-flight-based improved Pufferfish optimization algorithm (IPOA), which can find better answers to the 

PVs and FCSs in EDNs. The modifications enhance the exploration and exploitation phase of the existing algorithm, 

resulting in faster convergence rates and improved fitness. The algorithm has been tested on standard tension/ 

compression spring design problem and compared to other classical algorithms, like particle swarm optimization 

(PSO) or genetic algorithm (GA). The hybrid Levy flight algorithm works best on many test functions, which makes 

IPOA more useful for engineering global optimization problems. Also, the suggested method reduces actual power 

losses and improves voltage profiles in a number of different situations when dealing with the PVs and FCSs 

allocation problem in EDNs. Simulations on an IEEE 33-bus and 69-bus EDN demonstrate the superior performance 

of the IPOA over other metaheuristics. To highlight, IPOA's numerical results with mean values of 75.11 (33-bus) 

and 71.32 (69-bus) with exceptionally low variability confirm it as the most reliable and efficient optimization 

algorithm for minimizing the objective function. The IPOA outperforms other algorithms with superior convergence, 

stability, and computational efficiency. This work highlights IPOA's potential for addressing multi-objective 

optimization in complex, constrained energy systems. 

Keywords: Photovoltaic systems, Fast charging stations, Radial feeders, Pufferfish optimization algorithm, Levy 

flight distribution, Multi-objective optimization, Voltage stability. 

 

 

1. Introduction 

The growth of electric vehicles (EVs) and 

photovoltaic systems (PVs) is transforming 

electrical distribution networks (EDNs), but it 

presents challenges like uncoordinated charging 

patterns and voltage instability. Coordinated 

allocation of charging stations and PVs is crucial for 

balanced operation, efficient resource utilization, 

and minimal grid disruptions, necessitating robust 

optimization techniques. 

In [1], PVs are optimized for real power loss 

reduction and annual economic loss cost using 

multi-objective whale optimization (MOWOA). In 

[2], enhanced pathfinder algorithm is employed for 

finding the best locations and sizes of PVs and CSs 

considering different levels of EV penetration. Real 

power loss, voltage profile and greenhouse gas 

(GHG) emission are considered while solving the 

problem. In [3], Chernobyl disaster optimizer 

(CDO) is proposed for loss reduction, voltage 

profile improvement, reliability enhancement 

considering PVs, distribution- static VAr 

compensator (D-STATCOM) and energy storage 

system (ESS). In [4], hunter prey optimization 

(HPO) is proposed for PVs, D-STATCOM and CSs 

by aiming loss reduction and voltage stability 

enhancement. In [5], a hybrid BFOA-PSO is 

formulated with bacterial foraging optimization 
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algorithm (BFOA) and particle swarm optimization 

(PSO) for optimal placement of CSs in EDNs. The 

study shows minimal power losses and minor 

voltage deviation changes by the proposed 

methodology. In [6], a hybrid technique for locating 

CSs, combining gray wolf optimization (GWO) and 

PSO is presented. The approach minimizes active 

power loss, maximizes net profit, and improves grid 

reliability. In [7], a joint planning model for 

optimizing the locations and capacities of CSs and 

PVs in EDS to reduce energy losses and the 

optimization problem is solved using genetic 

algorithm (GA). In [8], a method to optimize real 

power loss and voltage deviation is presented while 

integrating fast-charging stations (FCSs) and PVs in 

EDNs using cuckoo search (CSA), GA, and 

simulated annealing (SA). In [9], a mathematical 

model for CS placement, focusing on coverage, 

losses, and voltage deviations is proposed. It uses a 

hybrid PSO-DS algorithm formulated by PSO direct 

search (DS) to optimize the placement of CSs and 

shunt capacitors (SCBs). In [10], the study proposes 

two-stage processes for FCSs allocation by charging 

station owner decision index (CSODI) and the 

hybrid gray wolf optimization-particle swarm 

optimization (GWO-PSO) algorithm. The GWO-

PSO technique achieves the best possible locations 

with low power loss, land cost, and EV population. 

To find the ideal locations for plug-in electric 

vehicle (PEV) with charge profile, a mixed integer 

liner programming (MILP) stochastic optimization 

problem is proposed [11]. Also, kernel density 

estimator (KDE), a nonparametric approach, is used 

to model uncertain PEV arrival and departure. The 

proposed mixed integer liner programming (MILP) 

approach yielded better results in less time. In [12], 

a fuzzy classified method is proposed for optimal 

sizing and placement of CSs, PVs, and D-

STATCOMs for 69-bus radial distribution systems 

using the RAO-3 algorithm. The method aims to 

reduce real power loss, enhance the substation 

power factor, improve the voltage profile, and 

allocate the optimum number of EVs at CSs. In [13], 

the research aims to minimize network loss by 

maximizing the placement of CSs and DGs in the 

power grid using arithmetic optimization algorithm 

(AOA). In [14], a modified Archimedes 

optimization algorithm (MAOA) is proposed for 

optimal placement of CSs, based on power loss, 

voltage deviation, and voltage stability index. In 

[15], the research proposes the optimal placement 

and capacity of battery energy storage systems 

(BESS) in EDNs integrated with PVs and EVs. The 

goal is to minimize system costs, including 

installation, replacement, operation, and 

maintenance. Three metaheuristic algorithms, PSO, 

african vultures optimization algorithm (AVOA), 

and salp swarm algorithm (SSA), are used to solve 

the problem. In [16], the study uses a hybrid GA-

PSO to optimize the placement of CSs and PVs in 

EDNs. It validates the effectiveness of the GA-PSO, 

resulting in minimum bus voltage within acceptable 

margins, low losses and CO2 emissions. In [17], the 

study focuses on integrating CSs into EDNs, 

particularly when PVs are involved. A hybrid GA 

and simulated annealing (GA-SA) is used to find 

optimal locations for CSs, aiming to reduce power 

losses and maintain acceptable voltage levels, 

enhancing the sustainability and reliability of 

distribution networks. In [18], PSO is proposed to 

demonstrating superior optimization effectiveness 

and computational efficiency, making it a promising 

technique for CSs and PVs placement in EDNs. 

Further, the review in [19] discusses the concept, 

advantages, PVs and CSs allocation methods and 

algorithms. 

From the aforementioned literature, integration 

of PVs and FCSs in EDNs enhances power system 

efficiency, reliability, and sustainability, addressing 

challenges like power loss reduction, voltage profile 

improvement, cost minimization, and greenhouse 

gas emission reduction [20]. On the other side, as 

per the no-free-lunch theorem, it is not possible to 

address all kinds of optimization problems with any 

single algorithm. Thus, researchers continue to 

inspire the introduction of new algorithms or the 

enhancement of existing ones to better adapt to real-

time complex optimization problems. 

Many metaheuristics have been developed in 

recent times, including the carpet weaver 

optimization (CWO) [21], sculptor optimization 

algorithm (SOA) [22], apiary organizational-based 

optimization algorithm (AOA) [23], focus and shake 

algorithm (FSA) [24], swarm bipolar algorithm 

(SBA) [25], swarm space hopping algorithm 

(SSHA) [26], migration-crossover algorithm (MCA) 

[27], addax optimization algorithm (AOA) [28], 

dollmaker optimization algorithm (DOA) [29], 

quadratic time optimization (QTO) [30], potter 

optimization algorithm (POA) [31], and fossa 

optimization algorithm (FOA) [32]. In this context, 

the following are the major contributions of thus 

paper.  

1. Introduction of POA with improvements for 

PV and FCSs allocation: The Pufferfish 

Optimization Algorithm (POA) [33] is designed to 

tackle multi-objective problems, specifically 

focusing on the reduction of real power loss and the 

enhancement of voltage profiles while solving PVs 

and FCSs allocation.  
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2. Enhanced exploration phase: Levy light 

distribution method is introduced for initializing the 

population in the exploration phase of basic POA. 

3. Comparison with other algorithms: The 

performance of POA is evaluated in relation to 

artificial rabbits optimization (ARO) [34] and 

Osprey optimization algorithm (OOA) [35], 

showing enhanced effectiveness in addressing the 

specified problem. 

4. Simulations on IEEE 33-bus and 69-bus 

system: Simulations were performed on the IEEE 

33-bus test system, demonstrating the effectiveness 

of the Adaptive POA across various scenarios. 

The remainder of the paper is structured as 

follows: Section 2 addresses the modelling of 

concepts, including PVs and FCSs; Section 3 

presents the problem formulation along with its 

equality and inequality constraints; Section 4 

outlines the solution methodology of the IPOA; 

Section 5 discusses the simulation results; and 

Section 6 offers a comprehensive conclusion that 

emphasizes the principal contributions and findings. 

2. Modelling of concepts 

This section introduces the modelling of PVs 

and FCSs, emphasizing their operational 

characteristics, power demands, and integration 

challenges within EDNs. 

2.1 Photovoltaic distribution generation 

Photovoltaic systems (PVs) in EDNs primarily 

deliver active power using DC-AC converters. 

Ideally, the working power factor of converters is 

one, allowing the effect of PV at a bus to be 

achieved by offsetting the active power load to 

match the output of the PV. Mathematically, 

 

𝑃̅𝑑,𝑖 = 𝑃𝑑,𝑖 − 𝑃𝑝𝑣,𝑖                                   (1) 

2.2 Fast charging station 

FCS modelling demonstrates voltage-dependent 

attributes of EVs using AC-to-DC converter, buck 

converter, and energy storage battery, representing 

active and reactive power demands. Mathematically,  

 

𝑃𝑐𝑠,𝑖 = 𝑃𝑐𝑠,𝑟 × (0.93 + 0.07 × |𝑉𝑖|
−3.107)  (2) 

 

𝑄𝑐𝑠,𝑖 = 𝑃𝑐𝑠,𝑖 × tan⁡(𝑐𝑜𝑠−1(0.97))   (3) 

 

The active and reactive power loadings at bus-i 

after CS integration are given by: 

 

𝑃̅𝑑,𝑖 = 𝑃𝑑,𝑖 + 𝑃𝑐𝑠,𝑖                                   (4) 

 

𝑄̅𝑑,𝑖 = 𝑄𝑑,𝑖 + 𝑄𝑐𝑠,𝑖                                   (5) 

3. Problem formulation 

In this section, the proposed multi-objective 

optimization problem for loss reduction and voltage 

profile improvement is explained.   

3.1 Objective function 

Basically the real power loss is directly 

proportional to the square of current flow through a 

branch and its resistance. Thus, the total real power 

loss of the network is given by,  

 

𝑃𝑙𝑜𝑠𝑠 = ∑ 𝐼𝑏
2𝑟𝑏

𝑛𝑏𝑟
𝑏      (6) 

 

Further, the voltage profile across the network 

needs to be maintained at an adequate level. The 

average voltage deviation (AVD) is defined: 

 

𝐴𝑉𝐷 =
1

𝑛𝑏𝑢𝑠
√∑ (|𝑉𝑠| − |𝑉𝑖|)

2𝑛𝑏𝑢𝑠
𝑖=1    (7) 

 

The proposed multi-objective is formulated for 

minimizing simultaneously and is given by, 

 

𝑂𝐹 = 𝑚𝑖𝑛(𝑃𝑙𝑜𝑠𝑠 + 𝐴𝑉𝐷)   (8) 

3.2 Constraints 

In order to maintain operational requirements 

and planning constraints, the following are 

considered in this work. 

 
|𝑉𝑚𝑖𝑛| ≤ |𝑉𝑖| ≤ |𝑉𝑚𝑎𝑥|     (9)  

 

0 ≤ 𝑃𝑝𝑣,𝑖 ≤ 𝑃𝐷                (10)  

 

∑ 𝑃𝑝𝑣,𝑖
𝑛𝑝𝑣
𝑖=𝑖 ≤ 𝑃𝐷               (11) 

 

2 ≤ (𝑙𝑝𝑣 , 𝑙𝑐𝑠) ≤ 𝑛𝑏𝑢𝑠               (12) 

 

2 ≤ 𝑙𝑐𝑠 ≤ 𝑛𝑏𝑢𝑠                (13) 

4. Solution methodology 

This section describes the optimization method 

derived from the Pufferfish Optimization Algorithm 

(POA), which is inspired by the attacking and 

defense mechanisms of pufferfish and its improved 

variant IPOA using Lévy flight distribution. 
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4.1 Pufferfish optimization algorithm  

Pufferfish, members of the Tetraodontidae 

family, use a distinctive defense strategy by inflating 

their elastic stomachs with water, thereby becoming 

spiky spheres to dissuade predators and its 

application to classical engineering problem.  

4.1.1. Initialization phase 

The proposed POA method is an efficient 

optimization strategy that uses population search 

within an iterative framework. Each POA member 

sets decision variables based on its location in the 

search space, representing potential solutions as 

vectors. The algorithm's population is represented 

mathematically as a matrix, with initial positions 

determined by Eq. (14) and Eq. (15). 

 

𝑃 = [
𝑃1
⋮
𝑃𝑁

]

𝑁×𝑚

= [

𝑝11 … 𝑝1𝑚
⋮ ⋱ ⋮

𝑝𝑁1 … 𝑃𝑁𝑚
]

𝑁×𝑚

             (14) 

 

𝑝𝑖𝑑 = 𝑙𝑏𝑑 + 𝑟 ∙ (𝑢𝑏𝑑 − 𝑙𝑏𝑑)              (15) 

 

where 𝑃 is the population matrix, 𝑃𝑗 is the jth POA 

member (candidate solution) and 𝑝𝑖𝑑  is its dth 

dimension in the search space (decision variable), 𝑁 

and 𝑚 are the number of population members, and 

number of decision variables, respectively; 𝑟  is a 

random number between [0, 1], 𝑙𝑏𝑑 and 𝑢𝑏𝑑are the 

lower bound and upper bound of the dth decision 

variable, respectively. 

The objective function of a problem can be 

evaluated using each POA member as a candidate 

solution, represented using a vector according to Eq. 

(16). 

 

𝐹 = [𝐹1 ⋯ 𝐹𝑖 ⋯ 𝐹𝑁]𝑁×1
𝑇               (16) 

 

The proposed POA approach updates population 

members' positions in problem-solving space by 

simulating natural behaviors between pufferfish and 

predators, including exploration, exploitation, 

defense mechanisms, and threat and escape. 

4.1.2. Exploration phase (Predator's attack) 

The initial phase of POA updates population 

members' positions based on predator attack strategy, 

increasing algorithm's global search power, 

 

𝐶𝑃𝑖 = {𝑃𝑘: 𝐹(𝑃𝑘) < 𝐹(𝑃𝑖), 𝑘 ≠ 𝑖},    

where 𝑖 = 1,… ,𝑁 and 𝑘 ∈ {1,2,…𝑁}            (17)

         

The POA design assumes a random selection of a 

pufferfish from the 𝐶𝑃𝑖  set. The chosen pufferfish 

(𝑆𝑃𝑖,𝑗) is then calculated using Eq. (18) and if the 

objective function value improves, the new position 

is replaced by the previous position using Eq. (19). 

 

𝑝𝑖,𝑗
𝑃1 = 𝑝𝑖,𝑗 + 𝑟𝑖,𝑗 ∙ (𝑆𝑃𝑖,𝑗 − 𝐼𝑖,𝑗 ∙ 𝑝𝑖,𝑗)             (18) 

 

𝑃𝑖 = {
𝑃𝑖,𝑗
𝑃1 𝑖𝑓⁡𝐹 (𝑃𝑖,𝑗

𝑃1) < 𝐹(𝑃𝑖)⁡

𝑃𝑖 𝑒𝑙𝑠𝑒⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡
             (19) 

 

where 𝑃𝑖,𝑗
𝑃1 is the new position for jth dimension of 

predator i, 𝑆𝑃𝑖,𝑗  is the position of the selected 

pufferfish, 𝐼𝑖,𝑗 is a random integer (1 or 2), 𝑟𝑖,𝑗 is a 

random number in [0, 1]. 

4.1.3. Exploitation phase (Pufferfish's defense) 

In the second phase of POA, the position of 

population members is updated based on a 

pufferfish's defense mechanism against predator 

attacks. If the predator's position improves the 

objective function value, it replaces the previous 

member. 

 

𝑝𝑖,𝑗
𝑃2 = 𝑝𝑖,𝑗 + (1 − 2 ∙ 𝑟𝑖,𝑗) ∙ {(𝑢𝑏𝑑 − 𝑙𝑏𝑑) 𝑡⁄ }      (20) 

 

𝑃𝑖 = {
𝑃𝑖,𝑗
𝑃2 𝑖𝑓⁡𝐹 (𝑃𝑖,𝑗

𝑃2) ≤ 𝐹(𝑃𝑖)⁡

𝑃𝑖 𝑒𝑙𝑠𝑒⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡
             (21) 

 

where 𝑃𝑖,𝑗
𝑃2 is the newly computed location for the ith 

predator, derived from the second phase of the 

suggested POA, The variable 𝑝𝑖,𝑗
𝑃2 ⁡ represents its jth 

dimension, 𝐹 (𝑃𝑖,𝑗
𝑃2)  signifies its objective function 

value, 𝑟𝑖,𝑗 are random values within the interval [0, 

1], and⁡𝑡 serves as the iteration count. 

The POA algorithm updates the position of POA 

members based on exploration and exploitation 

phases, continuing through iterations using Eq. (30) 

through Eq. (34) until the last iteration⁡𝑇. The best 

POA member's position is stored based on evaluated 

objective function values. A detailed explanation 

POA can be found in [30].  

4.2 Improvement with Lévy flight distribution 

The initialization phase of the POA can be 

improved by incorporating the Lévy flight 

distribution, which helps enhance solution diversity 

and improve the global search capability of the 
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algorithm. Its representation of the improved 

initialization phase as follows: 

 

𝑝𝑖𝑑 = 𝑙𝑏𝑑 + 𝑠 ∙ (𝑢𝑏𝑑 − 𝑙𝑏𝑑)              (22) 

 

Lévy flight is a random walk where the step sizes 

are drawn from a Lévy distribution. It is defined 

mathematically as: 

 

𝐿(𝑠)~|𝑠|−𝜆, 1 < 𝜆 ≤ 3               (23) 

 

where 𝐿(𝑠)  is step size and 𝜆  Lévy distribution 

parameter (typically set between 1 and 3).  

𝑠 =
𝜇

|𝑣|
1
𝛾

                             (24) 

 

where 𝜇~𝑁(0,1)  and 𝑣~𝑁(0,1)  are random 

numbers drawn from a standard normal distribution, 

respectively. To ensure positions remain within 

bounds, the following relation is applied. 

 

𝑝𝑖𝑑 = 𝑚𝑎𝑥[𝑙𝑏𝑑 ,𝑚𝑖𝑛(𝑝𝑖𝑑 , 𝑢𝑏𝑑)]              (25) 

 

This way, Lévy flight can ensure diversity in 

initialization by generating a mix of small and large 

random steps, promoting broader exploration of the 

search space, which prevents premature 

convergence and improves the algorithm's overall 

search ability. 

4.3 Computational efficacy of IPOA  

To evaluate the performance of the IPOA, one of 

the real-time engineering problems is solved. The 

algorithm is then compared against PSO, GA, ARO 

and OOA, basic POA. For all algorithms, population 

size and maximum iterations are taken as 30 and 

100, respectively.   

 Tension/ compression spring design problem: 

The objective function is to minimize the weight of 

the tension/ compression spring⁡𝑓(𝑥⃗). The optimal 

design must satisfy constraints⁡𝑔𝑖(𝑥), on shear stress, 

surge frequency, and deflection. This problem 

contains three constant variables ⁡𝑥⃗ , mean coil 

diameter (D), number of active coils (N) and wide 

diameter (d). The lower and upper limits are defined 

in Eq. (31). 

 

Min 𝑓(𝑥⃗) = 𝑥1
2𝑥2(𝑥3 + 2), 𝑥⃗ = [𝑑, 𝐷, 𝑁]     (26) 

 

𝑔1(𝑥) = (1 −
𝑥2
3𝑥3

71785𝑥1
4) ≤ 0              (27) 

 

𝑔2(𝑥) = (
4𝑥2

2−𝑥1𝑥2

12566(𝑥1𝑥1
3−𝑥1

4)
+

1

5108𝑥1
2 − 1) ≤ 0  (28) 

Table 1. Optimized results of selected functions 

Method 
Optimal variables 

Target  
d D N 

PSO 0.0520 0.3640 10.8905 0.0127 

GA 0.0512 0.3452 12.0040 0.0127 

ARO 0.0517 0.3576 11.2445 0.0127 

OOA 0.0517 0.3561 11.3334 0.0127 

POA 0.0512 0.3499 12.0764 0.0127 

IPOA 0.0520 0.3641 10.8684 0.0127 

 

 

 
Figure. 1 Convergence characteristics for tension/ 

compression spring design  

 

 

 
Figure. 2 Comparison of exploration in POA and 

IPOA 
 

 

𝑔3(𝑥) = (1 −
140.45𝑥1

𝑥2
2𝑥3

) ≤ 0                (29) 

 

𝑔4(𝑥) = (
𝑥1+𝑥2

1.5
− 1) ≤ 0                (30) 

 

𝑥⃗ = {

0.05 ≤ 𝑥1(𝑑) ≤ 2.00

0.25 ≤ 𝑥2(𝐷) ≤ 1.30

2.00 ≤ 𝑥3(𝑁) ≤ 15.0
               (31) 

 

In Table 1, IPOA outperforms other algorithms 

with least target value, indicating better exploration 

of search space and resulting in a global solution. 
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Levy flight, a power-law distribution, enhances the 

optimization algorithm's exploration capabilities by 

allowing long-tailed steps and avoiding local optima. 

This has prevented the algorithm from getting stuck 

in local minima and allows for a broader exploration 

of the solution space as shown in Fig. 2, making it 

more robust and capable of finding better solutions 

in complex problem landscapes. 

5. Results and discussion 

The computational efficiency of POA is 

evaluated by simulating various scenarios on IEEE 

33-bus and 69-bus radial EDNs utilizing a PC 

equipped with an Intel® Core™ i7 8750 CPU @ 

2.20 GHz and 16 GB RAM, employing MATLAB 

programming. A number of similar metaheuristics 

are compared to the IPOA, and 30 separate 

simulations are used for statistical analysis. 

5.1 Case 1: Base case 

In the base case, the 33-bus EDN experiences a 

load of 3715 kW and 2300 kVAr. The load flow 

analysis shows that the network lost a total of 

210.99 kW and 143.0329 kVAr. At bus-18, the 

lowest voltage level was recorded at 0.9038 p.u. The 

Average Voltage Deviation (AVD) is calculated as 

0.0104 p.u. Similarly, for the 69-bus EDN, the load 

is 3801.5 kW and 2694.7 kVAr. Load flow results 

indicate total network losses of 225.0034 kW and 

102.1994 kVAr, with the minimum voltage 

observed at 0.9092 p.u. at bus-68. The AVD for this 

system is determined to be 0.0046 p.u. 

5.2 Case 2: Integration of PV systems 

In this study, three PVs are optimally integrated 

into the 33-bus and 69-bus EDNs to enhance 

network performance.  

33-Bus Network: The optimal PV locations are 

identified as buses 13, 24, and 30, with 

corresponding sizes of 801.7 kW, 1091.33 kW, and 

1053.64 kW. This integration reduces losses to 

72.79 kW and 50.65 kVAr, respectively. The 

minimum voltage improves to 0.9687 p.u. at bus-33, 

and the AVD decreases significantly to 0.0037 p.u. 

Compared to MOWOA [1], the IPOA results are 

highly competitive, as presented in Table 2.  

69-Bus Network: The best place for the PVs cuts 

power losses to 69.4262 kW and 34.968 kVAr, 

respectively. The minimum voltage increases to 

0.979 p.u. at bus-65, further improving network 

performance. The IPOA results in this case are also 

very competitive with EPFA [2], as detailed in 

Table 2. 

Table 2. Comparison of PV allocation with literature 

EDN Reference  
PVs in kW / 

Bus # 
Ploss (kW) 

33-bus 

MOWOA [1] 

801.84/13 

1091.46/24 

1046.58/30 

72.848 

Proposed IPOA 

801.7/13 

1091.33/24 

1053.64 /30 

72.79 

69-bus EPFA [2] 

381.45/17 

1718.84/61 

525.56/11 

69.43 

 Proposed IPOA 

380.43/18 

1718.97/61 

526.75/11 

69.4262 

 
Table 3. Comparison of CSs allocation 

EDN 
CSs in kW / 

Bus # 

Ploss  

(kW) 

AVD 

(p.u.) 

33-bus 

400 (2) 

250 (19) 

100 (26) 

223.2506 0.0114 

69-bus 

800 (2) 

500 (28) 

200 (47) 

225.1038 0.0046 

 

5.3 Case 3: Integration of CS 

This case explores the optimal integration of 

three FCSs in the network. The power ratings of 

FCSs range from 50 kW (one CHAdeMO/CCS 

connector) to 400 kW (eight connectors). For this 

study, capacities of 400 kW, 250 kW, and 100 kW 

are selected for the 33-bus network, and 800 kW, 

500 kW, and 200 kW for the 69-bus network. Table 

3 summarizes the results. 

33-Bus Network: Buses 2, 19, and 26 are the 

ideal locations for the FCSs. Due to the additional 

CS load, the active and reactive power losses 

increase to 223.25 kW and 150.409 kVAr, 

respectively. The Average Voltage Deviation 

(AVD) slightly increases to 0.0114 p.u., and the 

minimum voltage magnitude remains stable. 

Compared to Case 1, real power losses rise by 

5.81%. 

69-Bus Network: The search space for the FCS 

locations includes bus ranges [2, 27], [28, 46], and 

[47, 69]. The best locations are identified as buses 2, 

19, and 26. The additional CS load results in active 

and reactive power losses of 225.1038 kW and 

102.4322 kVAr, respectively. At bus-65, we observe 

a minimum voltage of 0.9092 p.u. and an AVD of 

0.0046 p.u. In comparison to Case 1, the increase in 

real power losses (0.046%) is negligible, indicating 

minimal impact on network efficiency. 
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Table 4. Comparison of Case Studies 

EDN 
PVs EVs Ploss 

(kW) 

AVD 

(p.u.) Size (bus)  

33-

bus 

819.54 (13) 

1133.88 (24) 

1098.73 (30) 

400 (2) 

250 (19) 

100 (26) 

75.0853 0.0038 

69-

bus 

465.51 (17) 

548.77 (53) 

1683.67 (61) 

800 (2) 

500 (28) 

200 (47) 

70.2224 0.0011 

 

5.4 Case 4: Integration of both PV and CS   

In this case, simultaneous allocation of PVs and 

CSs are planned. Results are given in Table 4. 

Notably in the both test systems, the CS locations 

are still remains same as in Case 3. However, the 

locations are sizes are differing due to increased EV 

loading in the networks.  

33-Bus Network: The best PV locations are 14, 

24 and 30. The best PV sizes are 370.28 kW, 525.38 

kW, and 932.67 kW, respectively. Thus, the power 

losses are reduced to 80.02 kW and 55.57 kVAr, 

respectively. On the other side, the minimum 

voltage magnitude is noticed as 0.9684 p.u. at bus-

18. Further, the AVD is significantly reduced to 

0.0036 p.u.  

69-Bus Network: The best PV locations are 14, 

24 and 30. The best PV sizes are 370.28 kW, 525.38 

kW, and 932.67 kW, respectively. Thus, the power 

losses are reduced to 70.2224 kW and 35.3522 

kVAr, respectively. On the other side, the minimum 

voltage is noticed as 0.979 p.u. at bus-65. Further, 

the AVD is significantly reduced to 0.0011 p.u.  

5.5 Comparative study of IPOA and Others   

The results in Table 5 show how well six 

optimization algorithms-PSO, GA, ARO, OOA, 

POA, and IPOA—work on two test systems, 33-bus 

and 69-bus, to find the smallest value of an objective 

function. 

33-Bus Network: IPOA has outstanding 

performance, attaining the lowest mean (75.11) and 

unmatched consistency (SD: 0.05), establishing it as 

the most efficient algorithm. POA yields balanced 

outcomes with a comparatively low mean (81.98) 

and reasonable stability (SD: 3.40). PSO 

demonstrates constant performance (SD: 1.92), 

although it exhibits a larger mean (87.78), rendering 

it less effective for reduction. ARO and OOA 

demonstrate modest variability (SD: 5.29 and 4.81, 

respectively) and outperform PSO somewhat; 

however, they are less effective than IPOA or POA. 

 

Table 5. Comparison of Case 4  
33-Bus 

Method Min Max Mean Median SD 

PSO 86.72 93.94 87.78 86.73 1.92 

GA 81.71 105.07 84.72 81.74 5.72 

ARO 79.61 97.88 83.65 81.06 5.29 

OOA 79.59 108.46 81.38 79.59 4.81 

POA 80.04 93.42 81.98 80.06 3.40 

IPOA 75.09 75.28 75.11 75.09 0.05 

69-bus 

Method Min Max Mean Median SD 

PSO 69.48 99.93 70.99 69.49 4.42 

GA 70.26 86.31 72.03 70.88 2.75 

ARO 69.74 86.89 72.25 70.18 4.66 

OOA 71.64 82.04 77.01 78.67 4.58 

POA 70.19 97.27 73.58 70.84 7.43 

IPOA 70.22 75.65 71.32 70.53 1.67 

 

 

GA exhibits the greatest variability (SD: 5.72) and 

mean (84.72), rendering it less trustworthy and 

efficient.  

69-Bus Network: In this system, IPOA 

demonstrates superior performance with a low mean 

(71.32) and high consistency (SD: 1.67). PSO 

attains the second-lowest mean (70.99) with 

moderate stability (SD: 4.42), rendering it a 

competitive option. GA demonstrates commendable 

stability (SD: 2.75) but exhibits a little elevated 

mean (72.03). ARO and OOA are less useful 

because their averages are high (72.25 and 77.01, 

respectively) and their variability is moderate. POA, 

despite exhibiting the greatest variability (SD: 7.43), 

attains a mean of 73.58, signifying sporadic peaks 

but erratic performance. 

6. Conclusion 

This study identifies critical gaps in optimizing 

PVs and FCSs integration, including managing real 

power losses and voltage instability. By leveraging 

the Improved Pufferfish Optimization Algorithm 

(IPOA), the study successfully addresses these 

challenges. The methodology demonstrates 

substantial improvements in power loss reduction 

and voltage profile enhancement. This study 

examines how combining PVs and EVs affects 

power losses in 33-bus and 69-bus distribution 

networks. In the base case, with EVs, and with both 

EVs and PVs, PV power loss reduction is used to 

evaluate network performance. Base case power 

losses in the 33-bus network are 210 kW. When 

optimally integrated, PVs cut losses to 72.79 kW, a 

65.34% loss reduction, proving their usefulness in 

network efficiency. Adding EVs as a load increases 

network losses to 223.25 kW owing to charging 
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station demand. However, adding PVs to EVs cuts 

losses to 75 kW. PVs reduce loss by 66.41% in this 

situation, demonstrating their capacity to mitigate 

EV loads and preserve network performance. Base 

case losses for the 69-bus network are 225 kW. PV 

integration cuts losses by 69.15% to 69.42 kW, 

demonstrating PVs' impressive power loss reduction. 

Due to EV charging, network losses rise to 225.11 

kW. With simultaneous PV integration, losses drop 

to 70 kW, a 68.90% reduction. This shows that PVs 

can reduce EV integration losses and maintain 

network efficiency. The analysis shows that PV 

integration is critical to minimizing power losses in 

both networks. The results show that PVs can 

counteract increasing losses even with EV loads, 

highlighting their usefulness in future energy 

systems that mix renewable energy generation and 

electric mobility. Synergistic PV-EV integration 

improves network performance and reduces energy 

waste sustainably. 

Notation List 

𝑃𝑑,𝑖 & 𝑄𝑑,𝑖  Base case active and reactive power 

loadings of bus-i,  

𝑃̅𝑑,𝑖 & 𝑄̅𝑑,𝑖  Active and reactive power loadings of 

bus-i after PV/ CS integration 

𝑃𝑐𝑠,𝑖 & 𝑄𝑐𝑠,𝑖 Active and reactive power demands of 

CS, 

|𝑉𝑖|⁡& |𝑉𝑠| Voltage magnitudes of bus-i and sub-

station bus 

𝑃𝑐𝑠,𝑟 Rated power capacity of CS at nominal 

voltage 

𝑟𝑏 & 𝐼𝑏  Resistance of the branch-b and current 

flow through it 

|𝑉𝑠| sub-station bus voltage magnitude 

𝑛𝑏𝑢𝑠 & 𝑛𝑏𝑟 Number of buses and number of 

branches in EDN 

𝑃𝑙𝑜𝑠𝑠 Total distribution losses 

𝐴𝑉𝐷 Average voltage deviation 

𝑂𝐹 objective function 

𝑙𝑝𝑣 & 𝑙𝑐𝑠 Locations of PV and CS 

𝑛𝑝𝑣 Number of PV locations 

|𝑉𝑚𝑖𝑛| Minimum limit for voltage 

|𝑉𝑚𝑎𝑥| Maximum limit for voltage 

𝑃𝐷 Total real power demand of the EDN 
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